CONCENTRATED MILK

Dairy Processing Technology
2012/2013
Introduction

• Concentrated milks are liquid milk preserves with a considerably reduced water content.
• Water removal is done by evaporation.
• Two type of concentrated milk:
 • Evaporated milk
 • Condensed milk
Evaporated Milk

- Evaporated milk is sterilized, concentrated, homogenized milk.
- Evaporation is done until reach 22% solids-non-fat in the evaporated milk.
- The product can be kept without refrigeration and has a long shelf life.
- After dilution, flavor and nutritive value of the product are not greatly different from that of fresh milk.
Evaporated Milk

• Manufacturing steps:

 - Preheating
 - Concentrating
 - Homogenization
 - Stabilization
 - Packaging
 - Sterilization
Preheating

- Heating for 20 min at a temperature below 100°C or using UHT treatment
- Inactivating enzymes
- Killing microorganisms (including bacterial spores)
- Enhancing the heat stability of evaporated milk
Concentrating

- Using evaporation/ reverse osmosis (rarely done).
- Dry matter content must be standardized based on mass density or refractive index determination.
- A higher concentration of dry matter content will lead to a lower yield and a poorer heat stability.
Homogenization

- To prevent creaming and coalescence.
- It should not be too intensive because the heat stability becomes too low.
Stabilization

- To ensure that evaporated, homogenized milk does not coagulated during sterilization.
- To acquire a desirable viscosity.
- Using a stabilizing salt (such as Na_2HPO_4).
- The addition of salt means adjusting the pH of evaporated milk, due to the lessen pH to 6.1 – 6.2 after preheating and evaporation steps.
Stabilization

- The stabilizing salt is added as an aqueous solution, which dilutes evaporated milk slightly → need to re-standardize to the correct dry-matter content during stabilization.
Packaging

- The common packaging used for evaporated milk is can.

 Can → tin plate of the cans is coated (provided with a protective layer of a suitable polymer) to prevent iron and tin from dissolving into the product.

- Evaporated milk intended for use in coffee is usually packaged in bottle.
Sterilization

- To kill all bacteria spores.
- To inactivate plasmin.
- At 121°C for 4 -7 minutes (D value of the spores)
- The most heat-resistant spores are those from *Bacillus stearothermophilus*.
- If the sterilizing effect is adequate to *B. stearothermophilus*, then *B. subtilis*, *C. botulinum* and *C. perfringens* are also absent.
Sterilization

- UHT sterilization kills bacterial spores more effectively than in-bottle sterilization.
- The combination of preheating & UHT treatment of the milk concentrate suffices to inactivate plasmin.
- Lipases & proteinases from psychrotrophs should be absent from raw milk because these enzymes would be insufficiently inactivated during sterilization.
Recombined Evaporated Milk

- Recombination: the addition of skim milk powder in order to comply with strict requirements.
- The powder must have been made from skim milk that is heated intensely (130°C for 1 min) → resulting heat stable recombined concentrated milk
Product Properties

■ Flavor & color
 – Ongoing Maillard reactions occur during storage, esp. at high temperature → resulting the development of a stale flavor.

■ Viscosity
 – Many consumers prefer the milk to be viscous.
 – Desirable viscosity can be achieved by sterilization in such a way that visible heat coagulation is barely prevented.
Product Properties

– UHT evaporated milk is always less viscous → k-carrageenan is often added
– If the original milk contains bacterial lipases & proteinases, these enzymes will remain inactive and lead to deterioration (soapy-rancid & bitter flavor, more/less transparent)

Nutritional value
– Sterilization step can destroy up to 10% lysine; half of vitamins B₁, B₁₂, and C; smaller proportions of vitamin B₆ and folic acid.
Heat Stability

- Concentrated milk is far less stable during sterilization.
- Evaporated milk should increase in viscosity during sterilization by incipient coagulation → the process should be optimized in order to prevent the low heat stability.
- HS is related to heat coagulation of milk → the formation of gel during sterilization due to high concentration of serum proteins in milk.
Heat Stability

- Preheating (for example 3 min at 120°C) must be done before evaporation in order to denature serum proteins.
- Heat stability of evaporated milk also can be improved by:
 - Lowering the calcium content of milk before evaporation using ion exchange method
 - The addition of 0.05% H$_2$O$_2$ or 15mol Cu$^{2+}$ after preheating but before evaporation.
Sweetened Condensed Milk

- Milk that is concentrated by evaporation, to which sucrose is added to form an almost saturated sugar solution.
- The high sugar concentration is primarily responsible for the keeping quality of the product and for its fairly long shelf life.
Composition of SCM

Approximate Compositions of Two Kinds of Sweetened Condensed Milk

<table>
<thead>
<tr>
<th></th>
<th>American Standard</th>
<th>British Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat content (%)</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Milk solids-not-fat (%)</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Lactose (%)</td>
<td>10.3</td>
<td>11.4</td>
</tr>
<tr>
<td>Sucrose (%)</td>
<td>45</td>
<td>43.5</td>
</tr>
<tr>
<td>Water (%)</td>
<td>27</td>
<td>25.5</td>
</tr>
<tr>
<td>Lactose/100 g water (g)</td>
<td>38.3</td>
<td>44.6</td>
</tr>
<tr>
<td>Sucrose/100 g water (g)</td>
<td>167</td>
<td>171</td>
</tr>
<tr>
<td>Concentration factor Q</td>
<td>4.60</td>
<td>5.00</td>
</tr>
</tbody>
</table>

Walstra et al. (2006)
SCM

- Manufacturing steps:
 - Heating
 - Homogenization
 - Sugar Addition
 - Concentration
 - Cooling & Seeding
 - Packaging
Heating

- Killing pathogens and potential spoilage microorganisms
- Inactivate milk lipase, but not bacterial lipases.
- UHT heating at about 130 – 140°C is commonly applied.
Homogenization

- Creaming is often not a major problem, and therefore homogenization is not always done.
Sugar addition

- Sugar can be simply added to the original milk & the sugar is pasteurized along with the milk → may cause extensive Maillard reactions during heating & evaporation.

- Alternatively, a concentrated sugar solution is added at the end of the evaporation step → the sugar solution must be sufficiently heat-treated to kill any osmophilic yeasts.
Concentration

- It is done by evaporation at high temperature (up to 80°C) → resulting a lower viscosity during heating but a higher viscosity of the final cooled product.
- The low water content of SCM implies a high viscosity and boiling point.
Cooling & Seeding

- After evaporation, SCM must be cooled to a temperature at which lactose is supersaturated, but the temperature must not be too low.
- During cooling, formation of large lactose crystals must be avoided by the addition of seed lactose.
- After seeding, cooling should be continued to crystallize the lactose.
Cooling & Seeding

- Cooling is the most critical & important stage in the whole process.
- The water in the SCM can only hold $\frac{1}{2}$ the quantity of lactose in solution. The remaining half will therefore be precipitated in the forms of crystals.
- Controlling the crystallization of lactose is required so desirable size of lactose crystals could be achieved.
Cooling & Seeding

- The required crystallization is accomplished by cooling the SCM rapidly under vigorous agitation, without air being entrapped.
Keeping Quality of SCM

- Microbial Spoilage
 - SCM is not sterile. It may contain living microbes & spores.
 - The low aw (about 0.83) & high sugar content prohibits growth of most but not all microbes.
 - Deterioration usually occurs by osmophilic yeasts, genus *Torulopsis* → gas formation (bulging cans), a fruity flavor, & coagulation of protein (due to ethanol production).
Keeping Quality of SCM

- **Microbial Spoilage**
 - Some micrococci may grow in SCM, especially if aw & temperature are high → resulting coagulation of protein & the development of off-flavor.
 - The growth of micrococci requires the presence of oxygen.
 - Some mold, such as *Aspergillus repens* & *A. glaucus* can grow as long as oxygen is present → formation of colored lumps & the development of off-flavors.
Keeping Quality of SCM

- Chemical changes
 - Age thickening & gelation can occur during storage, which can be affected by:
 - Type of milk → variation among batches of milk
 - Preheating of milk → the more intense the heat treatment, the higher the initial viscosity, the sooner a gel can form
 - Stage at which sugar is added → the later in the evaporating process, the less the age thickening
Keeping Quality of SCM

• Concentration factor (Q) → the higher Q, the more age thickening
• Stabilizing salts → adding a small amount of sodium tetrapolyphosphate (0.03%) mostly delays age thickening considerably, whereas adding more may have the opposite effect
• Storage temperature → age thickening considerably increases with storage temperature
Lactose Crystals

- SCM contains around 38 – 45 g lactose per 100 g water.
- The solubility of lactose is lower in SCM.
- 75% of the lactose tends to crystallize → the high viscosity leads to the formation of large lactose crystals → sandy mouthfeel.
- Preventing crystallization is not possible, thus a large number of crystals should be obtained → adding seed lactose (0.03%)