
BUTTER

Definition

 It is a plasticized dispersion of the emulsion type "water-inoil", in which water droplets, crystallized fat and air cell are dispersed in butter oil.

Source: Gunstone (2006)

Based on the legislation (FAO/WHO), the max. fat content is 95%.

Composition and structure of milk

			MEMBRAN	
FAT GLOBULE		\backslash	Water	
	Glycerides	\mathcal{N}	Protein	700 mg
	triglycerides	40 g	Phospholipids	250 mg
	diglycerides	0.1 g	Cerebrosides	30 mg
	monoglycerides	10 mg	Glycerides	+
	Fatty acids	60 mg	Fatty acids	15 mg
	Sterols	90 mg	Sterols	15 mg
	Carotenoids	0.3 mg	Other lipids	
	Vitamins A,D,E,K		Enzyms	
	Water		alkaline pho	sphatase
			xanthine oxi	dase
			many others	
			Cu and Fe	

Essential composition of milk fat and margarine products:

•Milk fat products, e.g. butter	•Milk fat 100% of total fat	
 Margarine products (vegetable oils and fats) 	•Milk fat max. 3% of total fat	

Name of milk fat products

Fat content (%)	Milk fat products
•80 - 95	Butter
•60 - 62	Reduced fat butter (3/4 butter)
•39 – 41	Low fat butter (half fat butter)

Butter

- Flavor depending on used culture; offflavors should be avoided
- Shelf-life depends on moisture distribution and pH
- Consistency largely dependent on fat crystals
- Number and size of fat crystals depends on temperature and temperature history

Butter composition:

Fat :80% : 16 - 18* Moisture Salt : 0 - 2%Protein :0.7% Specific energy Vitamin A Vitamin D Keeping quality at 6-7°C

: 3140 (kJ/100g) : 2500 (IU/100g) : 300 (IU/100g) : 2-3 months

*Varies with salt content

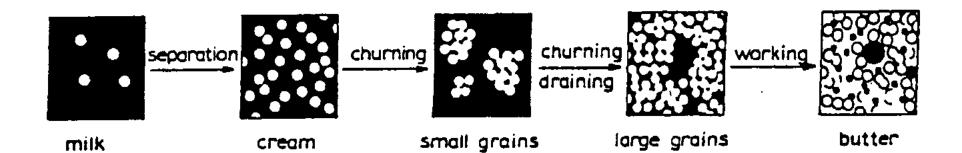
(Source: Livsmedelsbranschens Utbildningsorgan, Sweden)

The characteristics of butter:

- Fat content min. 80%.
- The water content depending on salt concentration.
- Containing vitamins A and D.
- The color of butter varies with the content of carotenoids (11 50% of the total vitamin A activity of milk).
 For butter made from buffalo milk, the color is white.
- It should be dense and taste fresh.
- The water content should be dispersed in fine droplets → looks dry.
- The consistency should be smooth →easy to spread and melts readily in the mouth.

• Butter usually is divided into 2 main categories:

Sweet butter cream:


- Made from pasteurized fresh cream
- The flavor is mild and creamy
- pH 6.4 or more

Cultured butter:

- Made from fermented or cultured cream
- The flavor cultured butter is originated from lactic acid bacteria, such as *Lactococcus lactis* sub*spp. lactis*, *Lc. Lactis* sub*spp. lactis* biovar *diacetylactis*, and *Leuconostoc mesenteroides* sub*spp. cremoris*.
- The starter is added to the pasteurized cream
- pH 5.1 or less
- The aroma is richer

- About 25 years ago, NIZO (Netherland Dairy Research Institute) established another variant:
 - Mildly sour butter:
 - Adding culture / flavor concentrates after churning process
 - pH is 6.3 or less
- According to the salt content, butter can be classified as:
 - Unsalted
 - Salted
 - Extra salted

Stages in the formation of butter

General Butter Making Process (Cultured Butter)

- 1. Milk reception
- 2. Preheating (63-65°C for 15 sec)
- 3. Fat separation (cream and skim milk)
- 4. Cream pasteurization (85 95°C for 15 sec)
- 5. Vacuum de-aeration (if necessary)
- 6. Cultured preparation
- 7. Cream ripening and souring
- 8. Temperature treatment
- 9. Churning
- 10. Working
- 11. Packaging

The raw material

- Good bacteriological quality, without taste/ aroma defects
- Iodine value is an important parameter.
 - High iodine value (high unsaturated fatty content) → soft milk fat → greasy butter.
 - Low iodine value \rightarrow hard milk fat
- Cream containing antibiotics or disinfectants is unsuitable

Vacuum de-aeration

- Removing undesirable flavor of a volatile nature, such as onion flavor.
- The cream is first heated to 78°C
- Then pumped to a vacuum chamber, where the pressure corresponds to a boiling temperature of 62°C.
- The reduced pressure causes volatile flavor and aromatic matter to escape in the form of gas when the cream is flash-cooled.

Culture preparation

- Using lactic acid bacteria (LAB), which is first cultured in pasteurized skim milk (90-95°C for 15-30 min).
- Lactic acid, **diacetyl** and acetic acid are the most important of the aroma substances.
- The production of diacetyl depends on the availability of oxigen.
- The cultures must be active → bacteria growth and acid production are rapid.

Cream ripening & souring

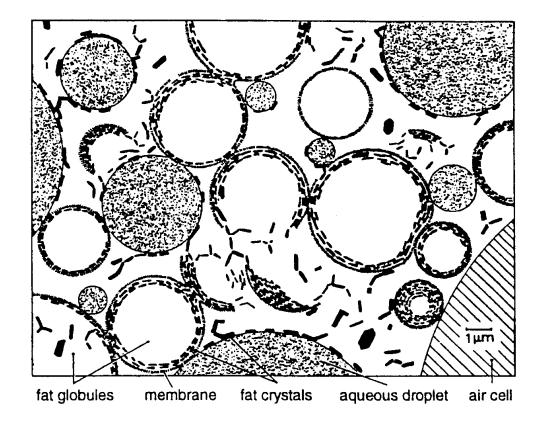
- The bulk starter cultured should be well mixed before pumped into the ripening tank.
- The cream needs temperature treatment if the butter requires certain consistency → depends on the iodine value of the cream.
- The amount of the starter is considered based on the temperature program.
- Bulk starter dosage: 1 7% of the amount of cream

lodine value	Temp. program (°C)	Approx. % of starter in cream
<pre>< 28 28 - 29 30 - 31 32 - 34 35 - 37 38 - 39 > 40</pre>	8 - 21 - 20 8 - 21 - 16 8 - 20 - 13 6 - 19 - 12 6 - 17 - 11 6 - 15 - 10 20 - 8 - 11	1 2-3 5 5 6 7 5

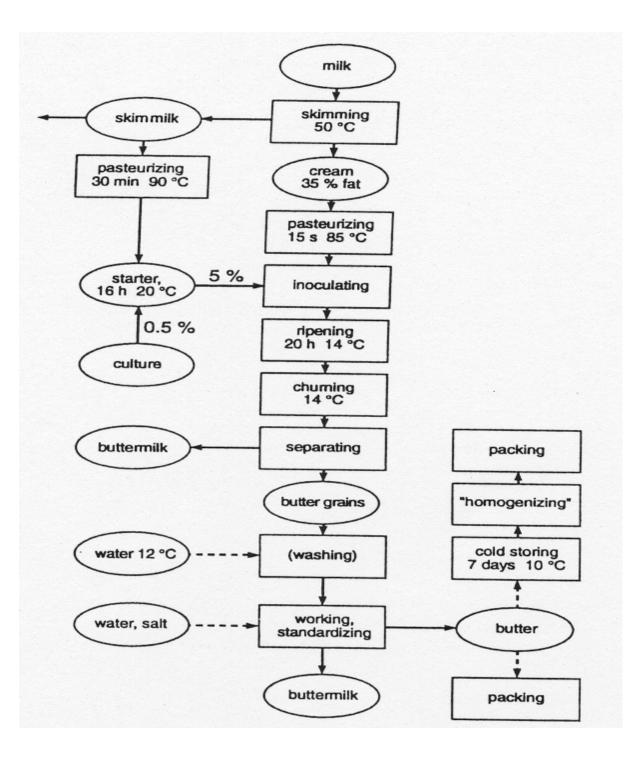
Beating / churning

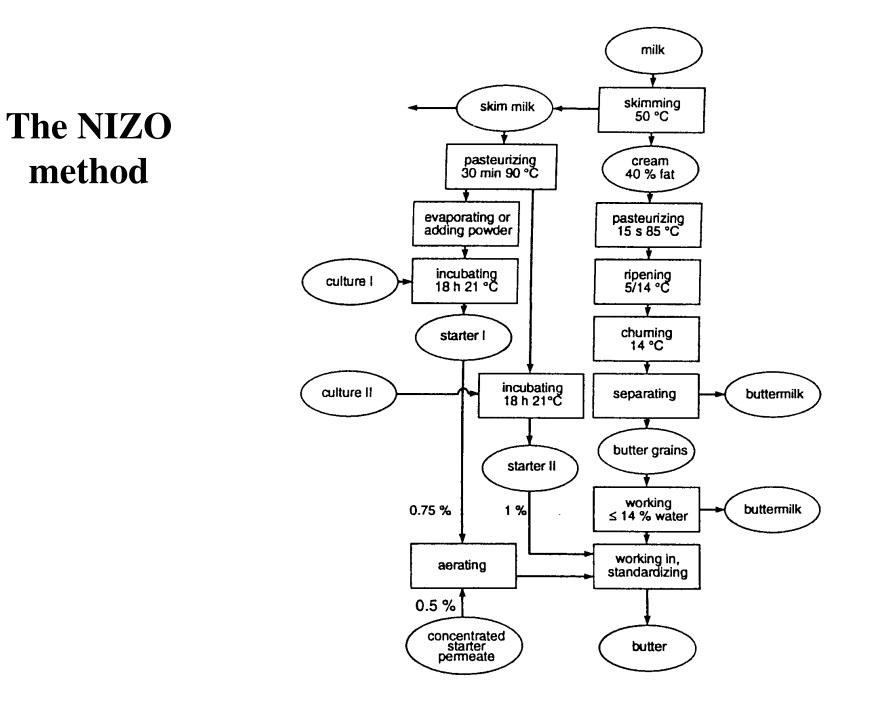
- Cream is agitated violently to break down the fat globules.
- A foam of large protein bubbles forms
- The membranes of the fat globules are drawn towards the air/water interface
- The fat globules are concentrated in the foam
- Continuous beating cause some of the membranes of the fat globules disintegrate
- Air bubbles coalescence
- The liquid fat spreads out on the surface of the bubbles and fat globules, and act as sticking agent.
- As consequence fat globules forced together
- Continuous beating leads to fat clump formation
- Large clumps are floating; fat can be separated

Mechanisms of churning


Features of churning

- Part of milk fat should be crystallized
- Churning temperature important; 8-12 ^oC
- Pre-cooling regime of cream important for butter consistency
- Churning results buttermilk (the liquid phase) and butter grains.
- The buttermilk then is drained off.
- The churning yield is acceptable if the value is less than 0.7


Kneading milk fat granules (Working)


- Excessive moisture squeezed out
- Small water droplets disrupted
- A steady state droplet size will be the end result
- Butter must have a dry surface (the water phase must be very finely dispersed)
- Too small droplets results in flat taste

Butter micro structure

Butter making (classical way)

Factors affecting firmness butter

- Crystal aggregate network
- Sintering of crystals increase firmness
- Percentage of solid fat
- Ratio large / small crystals
- Work softening process
- Fat composition
- Temperature treatment of the cream
- Temperature regime upon storage

References

- 1. Encyclopedia of dairy science.
- 2. Dairy processing handbook.
- 3. Modifying lipids for use in foods.