Introduction

No matter how nutritious, flavorful, or well textured a food, it is unlikely to be eaten unless it has the right color.

Factors which influence the acceptability of color in a certain food:

- Culture
- Geography
- Sociology

No matter the biases or habits of a given area, certain food groups are acceptable only if they fall within a certain of color array.
Color acceptability \rightarrow economic worth, i.e. in many raw food materials

- **Color**
 - To denote the human eye’s perception of colored materials,
 - part of the electromagnetic spectrum visible to the human eye and generally regarded as lying between 380 - 730 nm i.e. red, blue, or green.
 - Together with flavor and texture, color plays an important role in food acceptability.
 - Color is mainly a matter of transmission of light for clear liquid foods, such as oils and beverages.
 - Color may provide an indication of chemical changes in a food, such as browning and caramelization.

- **Pigment**
 - Normal constituents of cells or tissues (which is synthesized and accumulated in, or excreted from, living cells) that impart color. It has other properties, i.e. energy receptor, carriers of O_2, protectants against radiation.
Colorant

- A general term referring to any chemical compound (synthetically made) that impart (communicate) color
 i.e. dye & lake

Dye

- Colorants used in textile industry, has no place in food usage.

Lake

- A food colorant is synthetically made, absorbed on the surface of an inert carrier (i.e. alumina) and added to processed foods
- referred to as certified colors
The colors of foods are the result of natural pigments or of added colorants.

The natural pigments (non-certified colors) are a group of substances present in animal and vegetable products.

Four groups of natural pigments:
- **tetrapyrrole compounds**: chlorophylls, hemes, and bilins
- **isoprenoid derivatives**: carotenoids
- **benzopyran derivatives**: anthocyanins and flavonoids
- **artefacts**: melanoidins, caramels
Non-Certified Colors (natural colors)

- Do not need certificate to sell or use.
- Most are from nature (Natural Colors)
- Members Include:
 - Annatto extract
 - Beet juice powder
 - Canthaxanthin
 - Caramel
Non-Certified Colors (natural colors)

- Beta-Apo-8’Carotenal
- Beta carotene
- Cochineal extract/carmine
- Grape color extract
- Grape skin extract
- Fruit Juice
Non-Certified Colors (natural colors)

- Vegetable juice
- Paprika oleoresin
- Riboflavin
- Titanium dioxide
- Turmeric
- Turmeric oleoresin
Artificial Color vs. Natural Color

- **Artificial Colors**
 - Obtained by chemical reactions
 - Relatively stable (in most cases)
 - Less costly to use
 - Health concerns
 - Allergens
 - Cancer risks?
 - Consumer acceptability: Questionable

- **Natural Colors**
 - Obtained from nature
 - Processed by physical means
 - May be less stable than synthetic ones
 - May be more costly to use.
 - No health concerns
 - Benefits to health
 - Consumer acceptability: Good
Pigments Indigenous to Food

A. Chlorophylls
B. Myoglobin & Hemoglobin
C. Antocyanins
D. Carotenoids
E. Flavonoids
F. Proanthocyanidins
G. Tannins
H. Betalains
I. Quinones & Xanthones
J. Miscellaneous Natural Pigments
A. Chlorophylls

→ Green pigments involved in the photosynthesis of higher plants, incl. algae.

Location in plants

• In foods, concern focused on chlorophylls a & b → occur in approximate ratio of 3 : 1
• In leaves, chlorophylls are located in plastid bodies, so called chloroplasts (5-10 long µm; 1-2 thick µm) → within it are smaller particles, called grana (Φ 0.2-2 µm) → they are composed of lamellae (Φ 0.01-0.02 µm) → chlorophylls molecule are surrounded by lamellae.
\[R^= \]

Chlorophyll \(a \rightarrow \text{CH}_3 \)

Chlorophyll \(b \rightarrow \text{CHO} \)

Hydrophobic phytol side chain
Physical Properties

- Chlorophyll a & pheophytin a → soluble in alcohol, ether, benzene & acetone, slightly soluble in petroleum ether; insoluble in water.

- Chlorophyll b & pheophytin b → soluble in alcohol, ether, benzene & acetone, almost insoluble in petroleum ether; insoluble in water.

Chemical properties

- In food processing, the most common alteration in green chlorophylls → PHEOPHYTINIZATION; the replacement of the central Mg by the hydrogen → form a dull olive-brown pheophytins.
Effects in Food Handling, Processing & Storage

- Almost any types of food processing and/or storage → deterioration of chlorophyll pigments.

- **Dehydrated foods** packed in clear containers → autooxidation ← the blanching degree before dehydration

- **Lipoxygenases** → produced free radicals → degraded the chlorophylls

- **Fermentation** of cucumber → produced pheophytins, chlorophyllides & pheophorbides

- **Heating of green veggies in acid condition** → pheophytins production
Preservation of Green Color

The use of high quality materials → process as quickly as possible → store the product at low temperatures
B. Myoglobin & Hemoglobin

→ Myoglobin is a complex muscle proteins

→ Hemoglobin is the blood pigment

- **Hb** → contains 4 polypeptide chains & 4 heme groups, which are planar collection of atoms with the iron atom at the center.

- Heme group function: to combine reversibly with a molecule of \(O_2 \) → carried by the blood from the lungs to the tissues.

- **Myoglobin** → a quarter its size compared to Hb; consists of a single polypeptide chain (±150 AA units) attached to a single Hb group; it is contained within the cell tissues & it acts as a temporary storehouse for the \(O_2 \) brought by the Hb in blood.

Hb → considered the linking together of 4 myoglobins (the discussion of these pigments can be limited to myoglobin)
Physical properties

- Myoglobin is part of sarcoplasmic proteins of muscle; soluble in water & dilute salt solution.

Chemical Properties

- Oxygenation reaction

 Myoglobin + molecular $O_2 \rightarrow$ oxymyoglobin (O_2Mb) forms **bright red pigment**

- Oxidation reaction

 Myoglobin oxidation \rightarrow metmyoglobin (MMb) forms **brown color**

- Ferrous covalent complexes of myoglobin (purple) with:
 - Molecular $O_2 \rightarrow$ oxymyoglobin
 - Nitric oxide \rightarrow nitrosomyoglobin
 - Carbonmonoxide \rightarrow carboxymyoglobin
Effect of Handling, Processing & Storage

• Cured Meat Pigment

In commercial practice, sodium nitrite (NaNO₂) is the source of nitrous acid:

NaNO₂ (salt cure) in water → Na⁺ + NO₂⁻ (nitrite ion) → HNO₂ (in the curing brine)

Or using combustion gas (NO₂) to smoke or gas-oven fresh meat:

2 NO₂ (gas cure) + H₂O (in meat) ---> HNO₂ (nitrous acid) + HNO₃ (nitric acid)

Meat Curing:

HNO₂ + Mb (myoglobin in meat) → NOMb (pink cured meat pigment)
The formation of cured meat pigments viewed as 2 processes:

1. **Biochemical reaction**, which reduce nitrite \rightarrow nitric oxide; iron in heme \rightarrow the ferrous state

2. **Thermal denaturation of globin** \leftarrow heating at 66 C or higher & may involve the coprecipitation of the heme pigment with other protein in meat
• Packaging

Because meat pigment easily reacts with oxygen to produce either an acceptable oxygenated products or unacceptable oxidized products.

• Carbon monoxide (CO) flushing

It was done before sealing of fresh beef → very effective for preserving & stabilizing color for 15 days.

Certain metallic ions (esp. Cu) → extremely active in promoting autooxidation of O₂Mb to MMb, while Fe, Zn, Al are less active.
C. Anthocyanins

→ A group of reddish water-soluble pigments in plants which exist in the cell sap/ juice, i.e. flowers, fruits, vegetables,

- An anthocyanin pigment is composed of an aglycone (an anthocyanidin) esterified to 1 or more sugars. Only 5 type of sugars found in it, which are, in order of relative abundance: glucose, rhamnose, galactose, xylose, arabinose

- Anthocyanins may also be “acylated” which adds a third component to the molecule, i.e. p-coumaric, ferulic, caffeic, malonic, vanillic, or acetic acids may be esterified to the sugar molecule.

Fig. Anthocyanin aglicone
Stability in Food

- Anthocyanins show a marked change in color with changed in pH → the higher the pH → the faster the rate of destruction

Chemical Reactions

- The addition of sulfite, sulfite oxide → rapid bleaching of the anthocyanins → yellowish colors.

 i.e. in the making of jams, preserves such as dried fruits & vegetables

- The reaction with ascorbic acid → the degradation of both compounds ← the intermediate, peroxide produces by ascorbic acid degradation

 i.e. Cranberry juice cocktail stored at room temperature:

 0 days – 9 mg/100 g anthocyanins & 18 mg/100 g ascorbic acid

 6 months – ascorbic acid degradation & 80% degradation of anthocyanin
D. Carotenoids

→ A group of mainly lipid soluble compounds responsible of the yellow & red colors of plants & animal products.

• Most of produced carotenoids in nature is in form of fucoxanthin in various algae, in green leaves: lutein, violaxanthin, neoxanthin; β-carotene; lycopene in tomatoes; capxanthin in red peppers

LUTEIN

kiwi, egg yolk, corn, zucchini, red grapes, pumpkin

Properties:
Chemical - Organic, carotenoid, anti-oxidant
Physical - yellow colored slightly hydroscopic crystalline solid
Formula - C40H52O2
Molecular weight - 568.88
• Carotenoids include a class of HC, called carotenes, and their oxygenated derivatives, called xanthophylls.

• They consist of 8 isoprenoids units joined in such a manner that the arrangement of isoprenoid units is reversed in the center of the molecule.

• Forms of carotenoids:

 (1) free state in plant tissues (crystals or amorphous solids

 (2) solution in lipid media, i.e. capxanthin- lauric acid ester in paprika
• The association of carotenoids with proteins stabilised the pigment & also change the color, i.e. red carotenoid astaxanthin when complexed with protein → blue colorant in lobster shells; ovooverdin, the green pigment in lobster eggs; carotenoid-protein complexes found in fruits, vegetables.

• Carotenoids may occur in combination with reducing sugars via a glycosidic bond, i.e. CROCIN - containing 2 molecules of the sugar gentiobiose united with crocetin, found as the main pigment in SAFFRON.
Chemical Reactions

Provitamin A

- Beta carotene is precursor of vitamin A, which yields 2 molecules of vitamin A by cleavage at the center of the molecule.
- Alpha carotene is precursor of one molecule of vitamin A; which is half identical to beta carotene.

Oxidation reaction

- Stability of carotenoids depend on whether the pigment is in vivo or in vitro in environmental condition, i.e. lycopene in tomatoes is quite stable, but the extracted purified pigment is unstable.
- Enzyme degraded carotenoids rapidly, i.e. lypoxygenase.
- In processed food \rightarrow heat, light, presence of pro- and antioxidant influence carotenoids degradation.
Non-certified Colors (Natural Colors)

Food processing applications
Annatto

- Annatto extract.
 - Extracted from annatto seeds, *Bixa orellana* L., a tropical bush.
Annatto

- Two forms commercially available:
 - Bixin.

![Chemical structure of Bixin](image)
Annatto

- **Bixin**
- Color in final foods: orange.
- Solubility: oil soluble.
- Stability:
 - Light stability: Fair.
 - Heat Stability: good under 130 °C.
- Application: fatty or oily foods, including snack, cake & other bakery products, butter, popcorn oil.
Norbixin

- **Solubility**
 - water soluble in neutral or alkaline solution
 - Precipitates in acidic solutions (pH<5).

- **Stability**
 - Light stability: fair
 - Heat Stability: good under 130 °C
 - Acid stability: poor

- **Application**: cheese, bakery, snacks, confectionery, etc.
Annatto

Acid-stable annatto emulsion for beverages
Beet Juice Concentrate

- Obtained from red beet roots
- Solubility: water soluble
Beet Juice Concentrate

– Stability:
 ▪ Light: good
 ▪ Heat: Poor. Will not survive during heat processing in most cases
 ▪ pH: almost no effect
Beet Juice Concentrate

- Applications:
 - Ice Cream
 - Ice bar
 - Hard candy
 - Dry Beverage mixes (in powder form)
 - Noodle/pasta
Beta carotene/natural mixed carotenes

- Synthetic or extracted from natural source, plants or algae
Beta carotene/natural mixed carotenes

– Solubility
 - Oil soluble
 - Our Solution: Made water-dispersible.

– Stability:
 - Heat stability: Good
 - Light stability: Poor
Beta carotene/natural mixed carotenes

Stabilization. Left: ACRC, Right: A competitor’s product. Both were exposed to sunlight for 5 days.

*Photo 1. Stability comparison. Both were boiled, hot filled and exposed to outdoor direct sunlight for 5 days. PH 2.3

*Left: ACRC natural carotenes.
Right: Control (a competitor’s sample)
Caramel

Source:
- Reaction products of carbohydrates during heating
 - Usually ammonium and sulfate are added
 - Negatively charged
 - Positively charged

Stability
- Light: very stable
- Heat: very stable
- Acid: use acid stable type

Application:
- Beverages
- Bakery
- Confectionery
- Snacks, etc
Cochineal Extract

- **Source**
 - Extracted from cochineal (*dactylopius coccus costa*)
Cochineal Extract

- **Stability**
 - Light: excellent
 - Heat: excellent
 - pH: poor
 - Orange in acidic pH
 - Purple in neutral pH
 - Blue in alkaline pH

- **Acid stable cochineal extract:**
 - Can be boiled in 10% citric acid or even 0.01N HCl for at least 3 hrs.
 - Dose not precipitate in acidic beverage → precipitate cause discoloration.
Cochineal Extract

Left: Control (An acid proof cochineal extract from a competitor) in 0.3% citric acid solution. The original red color faded away after exposure.
Center: ACRC 1162-ralb in 1.0% citric acid solution. The original red color did not fade.
Right: ACRC 1162-ralb in 0.01N HCL. The original red color did not fade.
Carmine

- **Source:**
 - Aluminum/calcium lake of carminic acid, the coloring component in cochineal extract
 - In powder form, insoluble in water, soluble in alkaline water.

- Carmine is not acid stable:
 - Discoloration
 - Precipitation

- Application: pasta, surimi, bakery-pie fillings, seafood, bakery, pudding
Grape Color Extract

Sources:
- Extract of precipitated lees of Concord grape juice during storage

Solubility:
- Water

Stability:
- Light: good
- Heat: fair
- pH: poor
 - Acidic: red to purple
 - Neutral: purple
 - Alkaline: blue
Grape Color Extract

- Applications:
 - Non-beverage foods
 - Pie filling
 - Fruit preparation
 - others
Grape Skin Extract (Enochianina)

- **Source**
 - Extract of deseeded marc, remaining after grapes have been pressed for juice or wine.

- **Solubility:**
 - water

- **Stability:**
 - Light: good
 - Heat: fair
 - pH: poor
 - Acidic: red to purple
 - Neutral: purple
 - Alkaline: blue

- **Application:**
 - Beverages (alcoholic, carbonated)
Fruit juice

- **Source:**
 - Mature, edible fruits
 - Elderberry
 - Black currant
 - Blackberry
 - Others

- **Coloring agent:**
 - anthocyanins

- **Applications:**
 - Beverages
 - Tomato paste
 - Fruit preparation

- **Solubility:**
 - water

- **Stability:**
 - Light: good
 - Heat: fair
 - pH: color changes heavily as pH changes
 - Acidic: red
 - Neutral: purple
 - Alkaline: Blue

- The lower pH the darker the color
- Ascorbic acid accelerates anthocyanin degradation.
Vegetable Juice

Source:

- Fresh or dehydrated vegetables
 - Red cabbage
 - Red radish
 - Black carrot
 - Purple yam
Vegetable juice

- Coloring components
 - Anthocyanins

- Solubility: water

- Stability:
 - Light: good
 - Heat: fair
 - pH: color changes heavily as pH changes (the lower the pH is, the more condense the color is)
 - Acidic: red
 - Neutral: purple
 - Alkaline: Blue
Cabbage Color

- One of the most stable anthocyanin colors
- Purplish red in acidic solution
- Low odor version available
- Both liquid and powder forms available
Cabbage Color

- Wide applications
 - Beverage
 - Tomato paste
 - Pizza topping
 - Fruit preparations
 - Snack foods
 - Dairy
 - Confectionery
Red Radish Color

- One of the most stable anthocyanin colors
- Red in acidic solution
- Low odor version available
- Both liquid and powder forms available
Red Radish Color

- Keeps red at higher pH up to 6

- Wide applications
 - Beverage
 - Tomato paste
 - Pizza topping
 - Fruit preparations
 - Snack foods
 - Dairy
 - Confectionery

0038-ralb in a model rice beverage, pH 6.0
Paprika Oleoresin

- **Source:**
 - Extracted from red pepper

- **Solubility:**
 - Oil soluble
 - ACRC made it water dispersible
Paprika Oleoresin

- Stability
 - Light: Fair.
 - Heat: good

- Applications:
 - Seasoning
 - Snack
 - Salad dressing
 - Popcorn
 - Beverage
 - Confectionery
 - Others
Turmeric Oleoresin (Curcumin)

- **Source:**
 - Extracted from *curcuma longa* L., a member of ginger family.

- **Coloring component:**
 - Curcumin and curcuminoids

- **Solubility**
 - Fat and alcohol soluble
 - Cold water insoluble
 - Commercially dissolve curcumin in polysorbate-80 or -60 to make it water dispersible
Turmeric Oleoresin (Curcumin)

- **Stability:**
 - Heat: good
 - Light: poor
 - pH: color hue change with pH
 - Greenish in acidic pH
 - Orange yellow in neutral pH
 - More stable in acidic pH than in neutral or alkaline pH

- **Color hue:** Bright yellow in acidic solution
Turmeric Oleoresin (Curcumin)

Applications:
- Pickle
- Bakery
- Confectionery
- Others
 - Snack
 - Pudding
 - Gelatin
 - Gummy bear
 - Yogurt
 - Popcorn
 - Finger foods
Lutein

- A member of carotenoids
- Solubility:
 - Oil soluble
 - We made it water-dispersible

- Reasons to use lutein
 - Extended studies have proved the importance of lutein to eye health
 - Antioxidant—a free radical scavenger
Lutein

- **Applications**
 - As a nutritional supplement:
 - can be added to all foods
 - (plain in taste and flavor)
 - As a natural colorant:
 - can be added to all food
 - (a bright yellow color in water solution)
Lycopene

- **Sources:**
 - Synthetic
 - Extracted from nature, plants or microorganisms

- **A member of carotenoids**

\[(\beta\text{-ionone ring}) \quad \beta\text{-CAROTENE} \quad (\beta\text{-ionone ring})\]
Lycopene

- Solubility
- Oil soluble by nature
- ACRC has made stabilized and water-dispersible lycopene — for beverage and other food applications
Lycopene

Properties
- Benefit to prevent prostate cancer
- An antioxidant—free radical scavenger
- Beautiful orange color in beverage

Applications
- As a nutritional supplement, It can fortify every food.
- As a natural colorant, it can color every food