PERENCANAAN TEKNOLOGI & SISTEM BANGUNAN (PTSB) <u>03</u>

Building adapts the site rather than site adapts the building !

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

Reference: Frick, H., Purwanto, LMF, Sistem bentuk struktur bangunan, Yogyakarta, Kanisius, 1998

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

Reference: Frick, H., Purwanto, LMF, Sistem bentuk struktur bangunan, Yogyakarta, Kanisius, 1998

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

 $\textbf{Moediartianto},\,\text{ST},\,\text{M.Sc}\,\textcircled{\texttt{O}}\,2010$

Reference: Frick, H., Purwanto, LMF, Sistem bentuk struktur bangunan, Yogyakarta, Kanisius, 1998

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

Frame

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

Reference: Frick, H., Purwanto, LMF, Sistem bentuk struktur bangunan, Yogyakarta, Kanisius, 1998

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

Moment Frames

consist of one or more portals with columns joint to beams by moment resistant connections that transmit bending deformation from columns to beam and vice versa.

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

Braced Frames

Resist gravity load in bending and axial compression, and lateral load in axial compression and tension by triangulation, much like trusses BUILDING SYSTEMS Basic concept Structural systems Topography

OUTLINE

Timber Frame

- A. Joists provide intermediary support floor or roof deck
- B. Planks directly supported on beams
- C. Single beams require some device to connect them to column
- D. Twin beams bolted to column, allow pipes, etc to pass between
- E. Post
- F. Cross bracing resist lateral wind and seismic load

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

Shear Walls

As`the name imlies, it resists lateral load in shear

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

Moment Frame	Most flexible	Expensive, drift may cause problems
	Ductile, absorbs seismic force	Tall structures need additional stiffening
Braced Frame	More flexible than shear walls	Less flexible than moment frame
	Very stiff, good for wind resistance	Stiffness increases seismic forces
Shear Walls	Good for apartment or hotel	Inflexible for future changes
	Very stiff, good for wind resistance	Stiffness increases seismic forces

BUILDING SYSTEMS Basic concept Structural systems Topography

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

Frame Structure + Shear Walls

DRA family house, a steel construction suspended by *querkraft* architect

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

BUILDING SYSTEMS Basic concept Structural systems Topography

DRA family house,

a steel construction suspended by *querkraft* architect

OUTLINE

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

BUILDING SYSTEMS Basic concept Structural systems Topography

SEISMIC RESISTANT BUILDING Phenomenon Design failure Construction

