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ALL MODELS ARE WRONG AND
SOME ARE USE(FUL)/(LESS)

Mathematical Model

To describe real world processes using a
simple language, 1.e. mathematical
expression
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The two most important mechanisms

in Toxicology

all

DOSE-RESPONSE RELATIONSHIP — a correlation
between dose of a toxic substance administered or
received and the incidence of an adverse (including
health) effect in exposed population.

TOXICOKINETICS - process of uptake of toxicants
by the body of organism, the biotransformation they
undergo, the distribution of the toxicants and their
metabolites in the tissues, and the elimination of the
toxicants and their metabolites from the body.
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Dose-Response Models

Dose-response relationship (DRR) is fundamental to toxicology. Understanding
the association between effect and dose is the basis of satety evaluation,
assuming that the etfect is the result of the substance administered. In
toxicology, we can observe a quantal response (mortality or number of animals
attected) and a graded or continuous response (weight, enzyme activity, etc).

When a sufficient number doses is used in an experiment with a sufficient
number of animals, the result can be represented by a sigmoid dose-response
curve. In classical analysis of dose-response data, probit or logit transtormation
is used to transform the sigmoid curve into a linear curve. Based on the slope
and intercept of this linear curve, the values of LDsy or EDs can then be
derived.




Alternatively, a logistic response model can be used to describe the dose-ettfect
relationship:

Y=_° (18)

1+ "4

where Y is the observed biological rate, X is the (natural) logarithm of the
concentration, c is the undisturbed level of the biological rate, a is the logarithm
of the concentration at which the biological rate is half of the undisturbed level,
and b is a slope parameter.

Parameter b indicates the rate of increase ot inhibition with increasing
concentration around EDsg concentration. The higher the value of b, the more
abruptly the biological rate decreases, which would mean that the toxicant
strongly acts on the organism. On the other hand a low value of b does not
necessarily mean that a toxicant does not act strongly on the organism.




TOXICOKINETICS MODEL

« Compartment-based models describe toxicant movement between
compartments.

« A compartment represents the amount of a compound that
behaves as though it exists in a homogeneously well-mixed
container and moves across the compartment boundary with a
single uptake or elimination rate coefficient.

Chﬁk to add title

The model relates the amount or concentration Df a

compound in one compartment with that in another:
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Compartment Models

A simple compartment model
containing water and organism
compartments.

The water represents the source
Of toxicant and the organism
represents the toxicant sink.
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ASUMPTIONS:

 The toxicant is well mixed and homogeneous within each
compartment

No compound biotransformation occurs

The upta

ke rate constants and clearances remain constant

over time (if the organism undergoes physiological

change, t

nIS assumption can be violated)

The transfer between compartment is first order. Thus,
the flux across the boundary depends on the chemical
activity (concentration) in the respective compartment.

The net f

lux 1S the sum of the uptake and loss fluxes

across the compartment boundaries



The model relates the amount or concentration of a
compound In one compartment with that in another:

K, K
e
C, - C, >
water organism Surrounding
medium



g A m

da

Where

C, = the concentration of the chemical in
the organism (mol/kg)

Cy = the concentration of the chemical in the
water (mol/L)

ky = the uptake rate constant (L/kg.d)

ke = the elimination rate constant (1/d)

t = |me (d)
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A

If Cw Is held constant, as ideally occurs In
flow-through experiments and Is often
assumed for field exposures, Equation (1) can
be exactly integrated to yield

Ca = k“k'CW (1-e-ket)

e

The uptake rate constant can be derived from
the initial uptake of the chemical by the organism,
when elimination is asumed to be negligible

C, =k, C, t
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%=(1<U.Cw)-(ke.(fa) [

Where
C, = the concentration of the chemical in
the organism (mol/kg)

Cw = the concentration of the chemical in the
water (mol/L)

k, = the uptake rate constant (L/kg.d)

Ke = the elimination rate constant (1/d)
t = time (A)

Ca = K H];CW(l-e-ket)




After t— -

dC,/dt=0 --- steady state

BCF = C,/C,, = K /K,

Biological Concentration Factor

A

K.
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Typical Experimental Data
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Il Nonlinear Regression
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B Nonlinear Kegression
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Bl Nonlinear Regression
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Iteration process

Ku(o) = ku optimum
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Title hl I. Ia -
Nates on-lnnear kegression
Text
A1]1 the derivatives will ke calculated numerically.
The following new wariasbles are being created:
MName Lahel
FRED 1 Predicted Values
FEESID 1 Fesiduals
Iteration Residual 35 KT EE
1 24353 ,9776935  4.00000000 100000000
1.1 154,10745970 5.61514910 171690245
2 154,10745970 5.61514910 171690245
2.1 143,7823735 5.54496196 ,160166509
3 143,7823735 5.54496196 ,160166509
3.1 143,6845572 5.61031957 163439697
4 143,6845572 5.61031957 163439697
4.1 143,6805519 5.59395216 162658521
= 143,6805519 5.59395216 162658521
5.1 143,6803067 5.597856037 162567354
6 143.,6803067 5.59786037 162567354
6.1 143,6802930 5.59693934 ,1628251958
7 143,6802930 5.59693934 ,1628251958
7.1 143,68029253 5.59715734 162835171
l} Fun stopped after 14 model evaluations and 7 derivative evaluations.
Iterations have heen stopped bhecause the relative reduction between successive
£ (> II 1
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**Run stopped after 14 model evaluations and 7 derivative evaluations.
Iterations have been stopped because the relative reduction between successive
rezidual sums of squares iz at mwost 3I3CON = 1.000E-08

Nonlinear Fegression Jummmary Jtatistics Dependent Variable Ch
Jource DF  Zumwm of 3gquares Mean 3dquare

Regression 2 10619.33681 La09. 66840
Bezidual 16 143 . 68029 g.95800z2
UTncorrected Total 1a 10763.01710

[Corrected Total) 17 1905, 65576
E squared = 1 - Residual 33 / Corrected 33 = 92460

o

hsymptotic 95 %
hsymptotic Confidence Interwval
Parameter Estimate 3td. Error Lower Tpper

A1) 5.597157339 LBT2976652 4.170510568  Y.0Z23504111
KE L182835171 LO029876905 L0899495962 LZ226171380

Azyvmptotic Correlation Matrix of the Parameter Estimates
KU KE

2703
1.0000




Parameter Estimation

(SPSS for Windows 10.0)

Il the derivatives will be calculated numerically.

Iteration Residual SS KU KE
1 144.2117274 5.50000000 160000000
1.1 143.6859841 5.61110738 163502397
2 143.6859841 5.61110738 163502397
2.1 143.6806092 5.59362163 162673678
3 143.6806092 5.59362163 162673678
3.1 143.6803099 5.59793821 162870920
4 143.6803099 5.59793821 162870920
4.1 143.6802932 5.59692098 162824358
5 143.6802932 5.59692098 162824358
5.1 143.6802923 5.59716166 162835369

Run stopped after 10 model evaluations and 5 derivative evaluations.

Iterations have been stopped because the relative reduction between
successive residual sums of squares is at most SSCON = 1.000E-08
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Model

Predicted
values

Observation

Measured
values

12 14 16 18 20

Time (day)




Iteration Ee=sidual 33 241 EE
1 eede.044124 &.00000000 2.00000000
1.1 2.36794+301 -—-54.742752 0 -24.677153
1.2 G9301351745  12.7747535 -—-.49615356
1.3 S693.251719  6.69601641 1.75940276
& oB23.251719 6.69601641 1.753940276
2.1 3959.165430 7T.91550399 1.4223535222
3 3959.165430 7T.91550399 1.4223535222
3.1 1579.615177 9.870113%9%6 1.03883716
4 1579.615177 9.5870113%96 1.03583716
4.1 029.5788108 8.7o06z241a60  L,5921966737
Fun stopped after 10 model evaluations and 4 derivative evaluations.
The iterations limit has heen reached.




Single compartment model with time-varying input

In the real world situation, constant exposure to toxicants is a very special case. Mostly, levels of
toxic substances released inte environment are highly variable. Constant exposure will be realized
only in the case of persistent toxicants in a well-buffered environment, e.g. heavy metals in soil. In
almost all other cases, exposure is not constant. This may vary from erratic fluctuations to peaks
followed by a gradual decrease. Concentrations of environmental pollutants can be variable due to
rarying rates of input and dilution, changes in chemical form and selubility, and degradation.

For non-persistent chemicals, such as pesticides, the half-life, or degradation time, is a very
important variable determining ecological effects. Exposure concentrations in toxicity tests are
characterized by an initial peak at time zero, followed by a gradual decrease. There is no
theoretical framework for dealing with these non-constant exposures in the standard statistical
analysis of concentration-response experiments.




Various terms have been used to describe the patterns of time-variable exposures,
including pulse, plug, spike, episodic, fluctuating and intermittent exposures. In
general these patterns can be simplified into two types of variable exposure: (1) pulse
exposure which involves one or more isolated and brief exposure periods, and (2)
fluctuating exposure which can be defined as a continuous exposure to varying
toxicant concentrations .

The present model deals with a pulse exposure followed by exponential decay
{"diluted pulse"). This type of exposure is not an uncommon phenomenon, and can be
tound both in terrestrial or aquatic environments. In the case of metal contamination in
aquatic environments, such as urban streams, a decreasing exposure can occur when
chemical discharges were released intermittently during production processes, so there
will be a dilution driven by the flow and volume of water in the streams.

Colt) = Cong Kot (13)




Conlt) = Cong &Kot (13)

where:
Cw( = initial external concentration (e.g. in pg/g),

ko = rate constant for degradation of the chemical in the medium (-SETRsEy i

T'he second assumption is that the kinetics of the concentration in the body follow a one-
compartment model. This can be written as:

4%, =k Cr(t) - ke Calt) (14)
ot

where C,(t) = internal concentration at time t, k;= rate constant for uptake,
k,= rate constant for elimination, and other loss processes from the body, such as

metabolism.
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4% = ki Cult) - ko Co(t) (14)
it
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where C,(t) = internal concentration at time t, k,= rate constant for uptake,
k,= rate constant for elimination, and other loss processes from the body, such as

metabolism.

Most toxicity experiments start with animals transferred from a clean environment, so
equation (2) can be integrated with the initial condition, C.(0) = 0. Application of standard
techniques (e.¢. Laplace transtorms, see Jacques, 1972), yields:

Ca(t) = [OW, [ e _E—h’) (15)
ky— 1

{for the application, see Widianarko & van Straalen, 1996)
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